

SHF Communication Technologies AG

Wilhelm-von-Siemens-Str. 23D • 12277 Berlin • Germany

Phone +49 30 772051-0 • Fax +49 30 7531078

E-Mail: sales@shf-communication.com • Web: www.shf-communication.com

Datasheet SHF C701 A

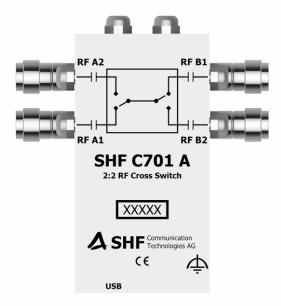
50 GHz / 64 Gbps 2:2 RF Cross Switch

Description

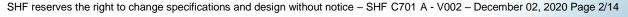
The SHF C701 A is a dual 2:2 broadband RF cross switch, operating form 100 kHz up to 50 GHz for clock signal, and up to 64 Gbps for NRZ Data signal. It offers high quality output signals together with a compact size and ease of operation.

With the 2:2 cross switch, it is possible to connect any of the 2 ports at the left-hand side of the device (switch A) with one of the ports on the right-hand side of the device (switch B). Ports on the same side (switch) cannot be connected to each other. It operates in both directions, i.e. the signal can be applied to or taken from a port on each side.

An option with low frequency compensation (LFC) is also available.


Features

- Broadband operation up to 50 GHz
- Up to 64 Gbps NRZ Data signal
- Bi-directional
- Low power consumption
- Single-ended operation
- USB interface
- Simple, easy to use GUI
- Automated measurements by using different software environments easily possible¹


Applications

· Broadband test and measurement equipment

Block Diagram

¹ To operate the switch, intuitive and well documented plain text commands are sent and received via USB. Thus the device can be operated either by the complementary software or automated by any programming language which can communicate with serial devices.

Accessories

- · Functional earth cable
- Mini-USB cable

Options

Option – Low Frequency Compensation (LFC)

The Low Frequency Compensation option is offered in order to reduce the frequency response roll-off. Due to a lower loss at the lower frequencies there is a typical role-off of 12 dB between 1 MHz and 50 GHz. The compensation reduces the roll-off to approximately 9 dB over the frequency range, but at the same time increases the insertion loss by roughly 3 dB at the lower frequency range.

Absolute Maximum Ratings

Parameter	Unit	Symbol	Min.	Тур.	Max.	Comment
Input Parameters						
Input Power	dBm	P _{in}			23	
External DC Voltage on RF Ports	V	V _{DCext}	-6		+6	AC coupled ports

Specifications - SHF C701 A

Parameter	Unit	Symbol	Min.	Тур.	Max.	Comment
Performance						
Minimum Input Frequency	kHz	f _{min}			100	Clock Signal
Maximum Input Frequency	GHz	f _{max}	50			Clock Signal
Bandwidth	GHz	f _{3dB} f _{6dB}		24 38		Clock Signal
Data Rate	Gbps		64			Data Signal
Insertion Loss	dB			3 6 9 12	5 9 11 15	< 24 GHz 24 - 38 GHz 38 - 42 GHz 42 - 50 GHz
Isolation	dB		30	40		< 50 GHz
Return Loss	dB		5	10		< 50 GHz
Settling Time	ms			1		
Switching Transient Overshoot ²	mV				±300	
Output Parameters						
Jitter RMS	fs	J _{RMS}				See note ³
Duty Cycle	%	DC				See note ³

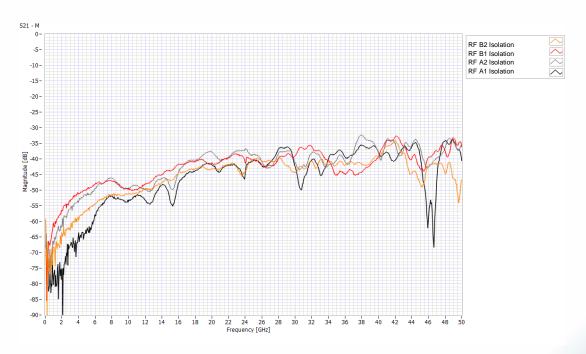
³ No degradation in jitter or duty cycle performance were observed for sine wave signals

² Switching Transient Overshoot refers to a voltage overshoot measured on the module's ports while toggling the switch

Parameter	Unit	Symbol	Min.	Тур.	Max.	Comment
Power Requirement						
Supply Voltage	V	V _{cc}	+4.40	+5.00	+5.25	Mini USB
Supply Current	mA	Icc		65		
Power Dissipation	mW	P _d		325		@ V _{CC} = +5 V
Mechanical Characteristics						
RF A1	Ω			50		1.85 mm (V) female
RF A2	Ω			50		1.85 mm (V) female
RF B1	Ω			50		1.85 mm (V) female
RF B2	Ω			50		1.85 mm (V) female
Dimensions	mm					See Outline Drawing
Weight	g			90		
Conditions						
Operating Temperature	°C	T _{ambient}	15		35	

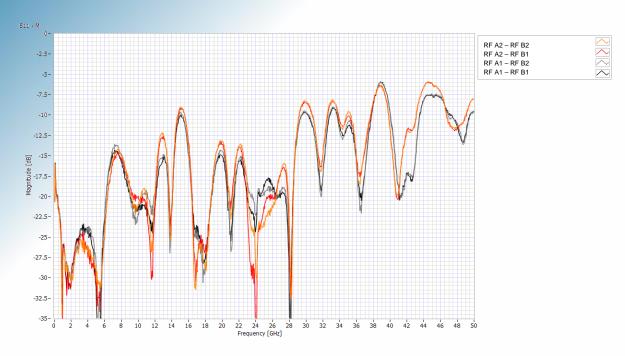
Specifications – SHF C701 A Option LFC

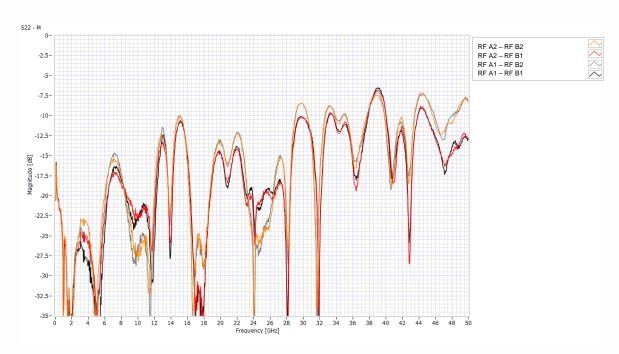
Parameter	Unit	Symbol	Min.	Тур.	Max.	Comment
Performance						
Bandwidth	GHz	f _{3dB} f _{6dB}		32 40		Clock Signal
Insertion Loss	dB			6 10 12	8 12 16	< 32 GHz 32 - 40 GHz 40 - 50 GHz
Return Loss	dB		5	10		< 50 GHz


Typical RF Performance @ +25°C

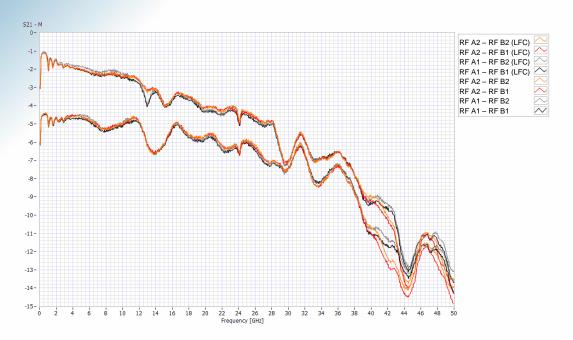
C701 A (no option)

The measurements below had been performed using a VNA.


Insertion Loss

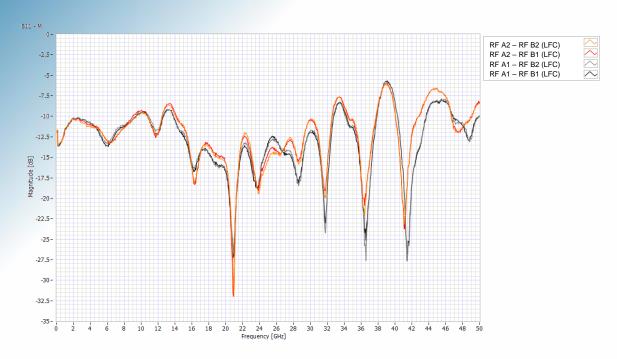

Isolation

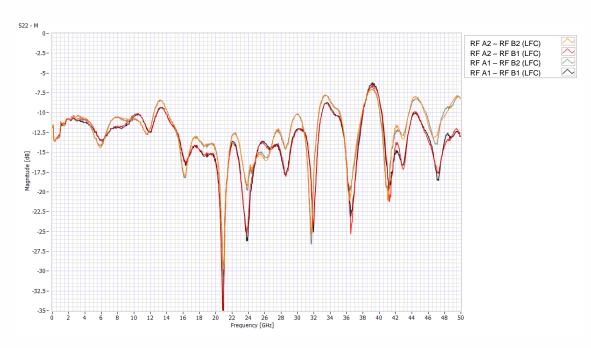
Return Loss (Switch A)

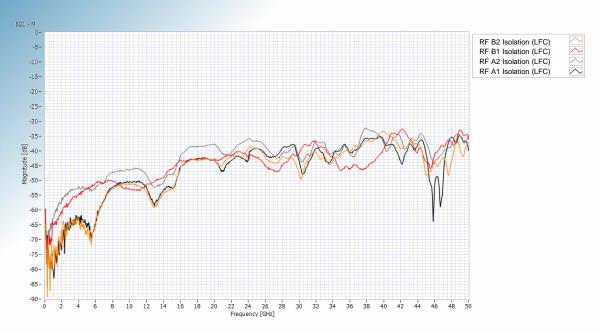

Return Loss (Switch B)

C701 A (option LFC)

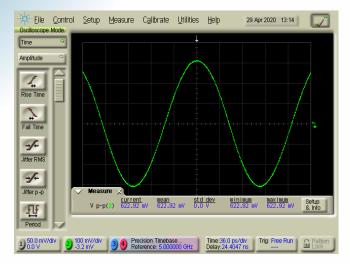
The measurements below had been performed using a VNA.

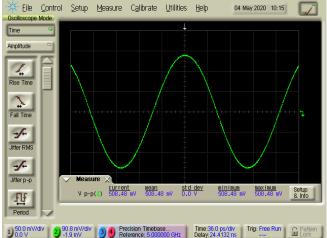

Insertion Loss - LFC compared to "no Option"


Insertion Loss


Return Loss (Switch A)

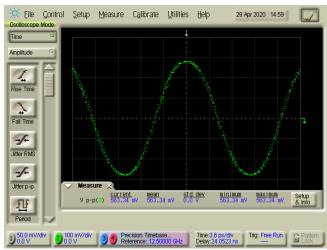
Return Loss (Switch B)


Isolation



Typical Output Waveforms

Clock Output Signals


The measurements below had been performed using an Anritsu signal generator (3697C) and an Agilent Digital Communication Analyzer (DCA) with a Precision Timebase Module (86107A) and a 70 GHz Sampling Module (86118A). The outputs of the Switch module had been connected directly to the DCA input. Input power of the clock signal is 0 dBm (630 m V_{DD}).

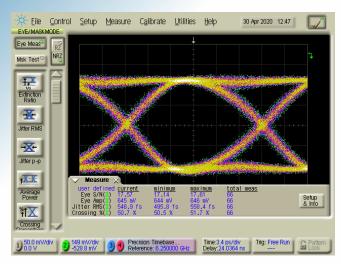
5 GHz input signal

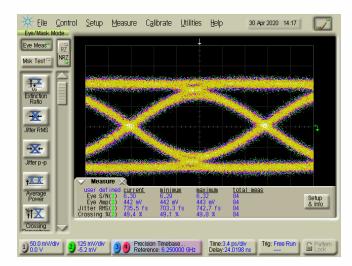
5 GHz output signal

A Section Timebase...

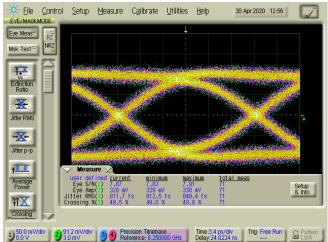
| Precision Timebase... | Time:3.6 ps/div | Delay:24:0523 ns | Trig: Free Run | Cock | Pattern | Pattern | Cock | Pattern | Pattern

50 GHz input signal

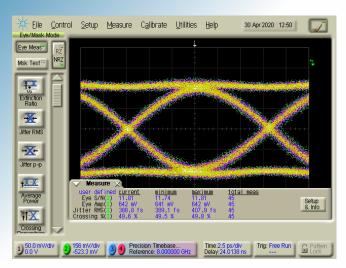

50 GHz output signal

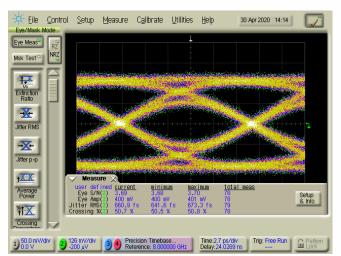


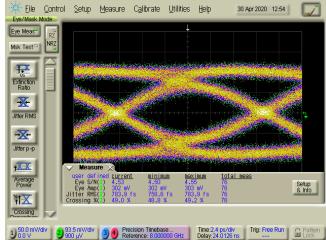
Data Output Signals


The measurements below had been performed using a SHF 12105 A Bit Pattern Generator and an Agilent Digital Communication Analyzer (DCA) with a Precision Timebase Module (86107A) and a 70 GHz Sampling Module (86118A). The outputs of the Switch module had been connected directly to the DCA input. Input Data amplitude is \sim 630 mV_{pp}, and it is a PRBS 2³¹-1 signal.

50 Gbps input signal

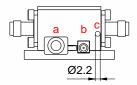

50 Gbps output signal

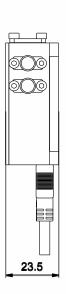

50 Gbps output signal - Option LFC

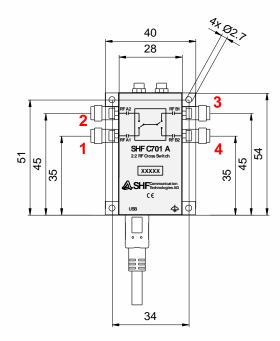


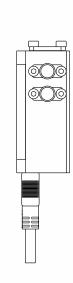
64 Gbps input signal

64 Gbps output signal

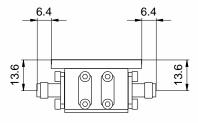



64 Gbps output signal - Option LFC





Outline Drawing – Module



Pos	Port	Connector
1	RF A1	1.85mm (V) female
2	RF A2	1.85mm (V) female
3	RF B1	1.85mm (V) female
4	RF B2	1.85mm (V) female

All dimensions are in mm

Port	Connector
а	Mini-USB
b	nc
С	Functional earth (FE)